

# Project examples for resource orientated sanitation systemsr Martin Oldenburg

University of Applied Sciences
Ostwestfalen-Lippe

10.07.2017



## **Obstacles of conventional sanitation**

- High water consumption for transportation of sewage
- "End-of-Pipe" Technology
- Discharge and accumulation of P and N in water bodies
- High energy consumption for the degradation of organic matter
- High energy consumption for the production of fertiliser (N)
- High investment and O&M-costs for the operation of the systems
- Small efficiency for the removal of micropollutants
- Transferability in developing and threshold countries not possible





## Wastewater is a resource

- Organic matter is energy source and soil conditioner
- Nitrogen, Phosporus are nutrients (agriculture)
- Heat energy is reservoir for heat exchanging processes
- Methane is energy source
- Water for irrigation and source for water bodies

These "substances" have to be identified as ressource and integrated into Loops.



## **Segmentation of flows**

| Toilet<br>waste-<br>water                     | Without water    | Urine                            | Faeces     |
|-----------------------------------------------|------------------|----------------------------------|------------|
|                                               |                  | Excreta                          |            |
|                                               | With flush-water | Yellowwater                      | Brownwater |
|                                               |                  | Blackwater                       |            |
| Domestic wastewater without toilet wastewater |                  | Greywater<br>(more sub-divisions |            |
|                                               |                  | for greywater are possible)      |            |



## **Distribution of loads**





## **Greywater reuse in Berlin**







- 70 households with approx. 240 inhabitants
- Reuse volume 10 m³/d
- Reuse water is sold to the users.



## **Heat recovery from greywater**

### Grauwasserrecycling mit vorgeschalteter Wärmerückgewinnung<sup>©</sup>

Pilotprojekt: 1. Berliner Passivhaus mit 41 Mietwohn- und 4 Gewerbeeinheiten



Grauwasserzulauf, mechanische Vorrreinigung und Wärmerückgewinnung Puffer und biologische Vorreinigung Biologisch/mechanische Reinigung und UV-Desinfektion Betriebswasserversorgung inkl. Trinkwassernachspeisung bei Betriebswassermangel



### **Heat recovery from greywater**



### **Investment (Prototype)**

additional costs 11,30 €/m<sup>2</sup> 1 % of building costs

### **Space demand:**

 $9 \text{ m}^2 = 0.1 \text{ m}^2/\text{cap}$ 

### Water saving

approx. 1.100 m<sup>3</sup>/a

### **Heat recovery**

ca. 13.000 kWh/a

### <u>0&M</u>

Electricity ca. 1.800 kWh/a no maintencance in the first six months of operation



## **Greywater treatment projects**





## Ressource orientated sanitation systems





## **Project Sneek/NL - Lemmerweg**

Pilotproject 32 housing units







Sanitation system Sneek/NL





## **Project Sneek/NL - Noorderhook**

- 200 housing units currently
- Extension to 600 housing units







## **Project Sneek/NL - Noorderhook**











KOPPLUNG VON REGENERATIVER ENERGIEGEWINNUNG MIT INNOVATIVER STADTENTWÄSSERUNG

## Resource orientated sanitation at district level in Hamburg

## Combining the production of renewable energy with innovative urban drainage systems – The Jenfelder Au Project











## KREIS – a project in a project

preparatory phase

operation phase

#### building project

planning and building of the infrastructure

### scientific supervision

of the project HAMBURG WATER Cycle in Jenfelder Au

### operating test

of the network and the treatment facilities for 3 years

### **Objectives of KREIS:**

- scientific supervision of different implementation options of HAMBURG WATER Cycle<sup>®</sup> combined with heat supply concepts in Jenfelder Au
- support of the planning and building process; support of the treatment facilities' startup processes including preliminary investigations
- scientific supervision of the operation after the completion of the treatment plants
- project duration: November 2011 until February 2015









<u>Urban quarter Jenfelder Au</u>



- revitalisation of former army barracks
- 45 ha total area, 35 ha reconstructed
- realisation: 2012 2019
- 835 accommodation units about 2.000 inhabitants
- high energy standards
- commercial as well as recreation areas







### Hochschule Ostwestfalen-Lippe

University of Applied Sciences











## **Processing water and solids - Jenfelder Au**

### **Blackwater fermenter**

Volume: 750 m³, d= 10 m,

Gas production approx.: 1.380 m³/d





## Jenfelder Au









## Jenfelder Au







Jenfelder Au

2015









## **Conclusions**

- KREIS is a new approach related to wastewater disposal and energy supply in urban areas.
- The HWC in combination with local energy concepts will offer different chances for new building projects and housing stocks as well – if the technologies work suitable.
  - → well-done production, competent operating and public relations are mandatory
- The implementation of new infrastructure systems takes time and patience.
- Small efficiency for the removal of micropollutants
- Transferability in developing and threshold countries not possible



## Vision for Sanitation systems



Closing
The Loop!



# Thank you for your attention