

Process Control in Water Industry

Olga Sanginova
Igor Sikorsky Kyiv Polytechnic Institute
Kyiv, Ukraine

WATER HARMONY ERASMUS +

Process Control

- Activities involved in ensuring the process are predictable, stable, and consistently operating at the target level of performance within only normal variation
- It is a deliberate influence on the process to achieve a desired performance of the given object
- In practice Process Control is carried out by Process Control Systems (PCS)

Different Control Technologies

	UNIT	PROCESS	ENTERPRISE
Optimization Control	Local Optimisation	Multi-Unit Optimisation	Non-linear Optimization
Model Based Control	Smith Predictors etc.	Multivariable Predictive Control	
Advanced Process Control	Feedforward Control	Dynamic Decoupling Control	Constrained Control
Regulatory Control	Single PI/PID Regulator	Cascade	

- Coordination of operations of separated workshops or plants
- Economy tasks planning
- Insuring effective control of the plant in general

- Search of optimal modes of interconnected devices
- Distribution of load between separate units or machines working in parallel
- Data collection from meters e.g. flow- and mass-meters in the process
- Process control based on collected data in order to insure maximum efficiency in process safety

- Stabilizing of preset technological parameters of the process
- Alarming
- Blocking of equipment in case of emergency

Available Economic Benefits

Control Strategies in WWT

- Treatment efficiency
 - turbidity, SS, pH etc.
- Chemicals economy
 - minimization of reagent consumption (coagulant, alkaline agent, flocculants) without reducing the treatment quality
- Minimum maintenance effort
 - due to communication with all kinds of equipment, checking the state of mechanical equipment such as pumps, mixers, valves etc.
 - PCS helps plant owners/consumers to control advanced processes with less operating personnel

Manual vs Automatic Control

How and when to influence the process?

Feed-back Control

- The most useful control technique
- Disadvantage
 - influence the process after deviation detected

Feed-back Control Scheme based on treated water quality

Feed-forward Control

- Advantage
 - influence the process before deviations occurre
- Disadvantage
 - Can't receive output response

Feed-forward Control Scheme based on raw water quality

Combined Control

Combined Control Scheme based on raw and finished water quality

Typical Project Phases

Functional Design

Define Process Control Goals

- Economy
- Operation
- Instruments
- Specify
 - Manipulated Variables
 - Disturbance Variables
 - Controlled Variables

Performance Indexes

Control Goal

Objective Function

Identifying Key Parameters

- The current mode of the object (mode parameters)
- What values influence the process?
- When the object changes its given mode and which of its states is the given one?

Process Instruments

- Sensors should function correctly
 - minimum noise
 - responsive
 - minimum deadtime
 - quick
 - representative
- Valves in working order
 - minimum hysteresis
 - free moving
- Where possible, fix problems

Instruments

Model Considerations

Building a house on good foundation

- Develop / understand the models for calculations and the assumptions behind them
 - WEAP®, STOAT®, MatLab, ...
- Most models are steady state models
- Consider lab / analyser update scheme in the model
- Consider filtering of raw data (inputs)

Simulation

Model Testing

Model testing requires significant effort

lacktriangle Minimum time for pre-step testing t_{pst} is given by

$$t_{pst} = 4 \cdot (n_U + n_Z) \cdot t_{ss},$$

where

 $-n_{II}$ - number of U

 $-n_Z$ - number of Z

 $-t_{ss}$ - time for steady-state

Choosing Objective Function

Product Value Optimization

•
$$I = \begin{bmatrix} Product\ Flows \times Product\ Values\ -\\ -Feed\ Flows \times Feed\ Costs\ -\\ -Energy/UtilityFlows \times Energy/UtilityCosts \end{bmatrix} \rightarrow min$$

- Limitations (examples)
 - Overloading
 - Flooding
 - Lack of overhead cooling

Choosing Objective Function

Linear Program Optimization

$$\blacksquare I = \sum_{i} \$_{i}^{cost} \times u_{i} \tag{2}$$

- Use to minimise utilities or other operating variables
- Use to maximise product value

Choosing Objective Function

Quadratic Program (QP) Optimization

$$\bullet I = \sum_{j} \$_{j}^{cost} \times \left(u_{j} - u_{j}^{ss}\right)^{2} \tag{2}$$

where y_i^{SS} , u_i^{SS} – "ideal operating point"

- Need to pre-calculate "ideal" U/Y values
- Difficult to specify QP U/Y costs

Controller Design and Tuning

Poor controller design leads to poor performance

One big controller

Separate controllers

Handles common constraints between sub-units

Covering multiple units

Enabled units wide optimisation

More control over possible MV/CV pairings

Less diverse range of CV response times

Easier to commission

Easier to test (less time)

Review of Process Control Systems

- PCS is the heart of the plant. Should it fail, the manager has to significantly increase staff number to run the plant in manual mode
- PCS collects data from meters e.g. flow- and massmeters in the process. PCS also checks the state of mechanical equipment such as pumps, mixers, valves etc.
- PCS uses the collected process data to adjust parameters such as pump speed to ensure stable flow or chemicals right dosage

Review of Process Control Systems

- For an operator the interface of the Process Control System is the computer-based SCADA-system.
 SCADA stands for Supervisory Control and Data Acquisition
- PCS has a "communication module" that helps communicate with all kinds of equipment through the following standards: 4-20 mA, Ethernet (TCP/IP) or different types of industry protocols (Profibus, Modbus)
- The actions to be done are determined by the PLC (Programmable Logic Controller), based on the program made by the automation engineer

How it works?

Thank you for your attention!

WATER HARMONY ERASMUS +

